Exercise 8.5.2

Nicolai Siim Larsen

02407 Stochastic Processes

We model the velocity of a particle with an Ornstein-Uhlenbeck process $\left\{V_{t}\right\}_{t \geq 0}$ with parameters $\sigma^{2}=1$ and $\beta=0.2$, and initial value $V_{0}=0$. Furthermore, we denote the position process of said particle as $\left\{S_{t}\right\}_{t \geq 0}$ and assume that the initial value is given by $S_{0}=0$. From eq. (8.64), we know the relationship between V_{t} and S_{t} is given as

$$
S_{t}=S_{0}+\int_{0}^{t} V_{u} d u
$$

As stated on p. 444, under the conditions that $V_{0}=S_{0}=0$, Theorem 8.4 yields that $S_{t} \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right)$, where the variance is calculated as

$$
\sigma_{t}^{2}=\mathbb{V}\left[S_{t}\right]=\frac{\sigma^{2}}{\beta^{2}}\left[t-\frac{2}{\beta}\left(1-e^{-\beta t}\right)+\frac{1}{2 \beta}\left(1-e^{-2 \beta t}\right)\right] .
$$

We can then solve the problem easily by simple calculations:

$$
\begin{aligned}
\mathbb{P}\left(\left|S_{t}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right) & =\mathbb{P}\left(\left|S_{t}\right|>1 \mid S_{0}=0, V_{0}=0\right) \\
& =\mathbb{P}\left(S_{t}>1 \mid S_{0}=0, V_{0}=0\right)+\mathbb{P}\left(S_{t}<-1 \mid S_{0}=0, V_{0}=0\right) .
\end{aligned}
$$

You can proceed either by using that $\mathbb{P}\left(S_{t}>1 \mid S_{0}=0, V_{0}=0\right)=1-\mathbb{P}\left(S_{t} \leq 1 \mid S_{0}=0, V_{0}=0\right)$ or note that $\mathbb{P}\left(S_{t}>1 \mid S_{0}=0, V_{0}=0\right)=\mathbb{P}\left(S_{t}<-1 \mid S_{0}=0, V_{0}=0\right)$ due to the symmetry of the normal distribution around 0 . We invoke the latter option. Hence,

$$
\begin{aligned}
\mathbb{P}\left(\left|S_{t}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right) & =2 \mathbb{P}\left(S_{t}<-1 \mid S_{0}=0, V_{0}=0\right) \\
& =2 \mathbb{P}\left(\left.\frac{S_{t}}{\sigma_{t}}<-\frac{1}{\sigma_{t}} \right\rvert\, S_{0}=0, V_{0}=0\right) \\
& =2 \mathbb{P}\left(\left.S_{t}^{*}<-\frac{1}{\sigma_{t}} \right\rvert\, S_{0}=0, V_{0}=0\right),
\end{aligned}
$$

where the asterisk denotes a standardized variable. In conclusion,

$$
\mathbb{P}\left(\left|S_{t}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right)=2 \Phi\left(-\frac{1}{\sigma_{t}}\right) .
$$

Inserting the different time points, we obtain the values:

$$
\begin{aligned}
\sigma_{1}^{2} & =0.2877, \quad \mathbb{P}\left(\left|S_{1}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right)=0.0311, \\
\sigma_{10}^{2} & =95.1891, \quad \mathbb{P}\left(\left|S_{10}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right)=0.4592, \\
\sigma_{100}^{2} & =2312.5, \quad \mathbb{P}\left(\left|S_{100}-S_{0}\right|>1 \mid S_{0}=0, V_{0}=0\right)=0.4917 .
\end{aligned}
$$

